
Second Order Phase Transitions

The Ising Ferromagnet

Consider a simpled-dimensional lattice ofN classical “spins” that can point up or down,si = ±1. We
suppose there is an interactionJ between nearest neighbor spins so that the parallel alignment is favored,
with the Hamiltonian

H = −1

2
J

∑
i,δ

si si+δ − µ
∑

i

si B. (1)

Here thei sums run over all sites in the lattice, and theδ sum runs over the 2d nearest neighbors. The factor
of 1/2 in the first term is to avoid double counting the interaction, and the second term is the interaction of
the momentsµsi with an external magnetic fieldB.

The canonical partition function is
Z =

∑
{si }

e−βH{si } (2)

summing the Boltzmann factor over all spin configurations{si }. The enumeration of all configurations cannot
be done ford ≥ 3, and although possible ind = 2 is extremely hard there as well (a problem solved by
Onsager). We will use an approximate solution technique known asmean field theory.

Last term we solved the problem of noninteracting spins in a magnetic field described by the Hamiltonian

H0 = −
∑

i

si b, (3)

writing b for µB. This is easy to deal with, since the Hamiltonian is the sum over independent spins, unlike
Eq. (1) which also has pair interaction terms. For example we can calculate the partition function as the
product of single spin partition functions

Z0 = [e−βb + eβb]N (4)

and the average spin on each site is

〈si 〉 = eβb − e−βb

eβb + e−βb
= tanh(βb). (5)

In the mean field approximation we suppose that thei th spin sees aneffective fieldbef f which is the sum of
the external field and the interaction from the neighbors calculated as if each neighboring spin were fixed at
its ensemble average value

bef f = b + J
∑

δ

〈si+δ〉 . (6)

We now look for a self consistent solution where each〈si 〉 takes on the same values which is then given in
analogy with Eq. (5)

s = tanh[β(b + 2Jds)]. (7)

Lets first look atb = 0. Defineε = 2dβ Js so that

ε = 2dβ J tanhε. (8)

This is easily solved graphically. ForT > Tc = 2d J/kB the only solution isε = 0. ForT < Tc two new
solutions develop (equal in magnitude but opposite signs) with|s| growing continuously belowTc. NearTc

we can get the behavior by expanding tanhε in smallε, so that Eq. (8) becomes

ε = Tc

T
(ε − 1

3
ε3) (9)
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Figure 1: Graphical solution of the self consistency condition.

giving to lowest order is small(1 − T/Tc)

s = ±√
3

(
Tc − T

Tc

)1/2

. (10)

Focusing on thepower lawtemperature dependence nearTc we introduce the small reduced temperature
deviationt = (T − Tc)/Tc and write this for smallt < 0 ass ∝ |t|β . This introduces theorder parameter
exponentβ = 1/2 in mean field theory.

We canalsocalculate the magnetic susceptibilityχ = ds/db|b=0. From Eq. (7) we have (writings′ = ds/db)

s′ = sech2[β(b + 2Jds)](β + Tc

T
s′) (11)

so that just aboveTc

χ = 1

kBTc

(
T − Tc

Tc

)−1

, (12)

giving adivergingsusceptibility asT approachesTc from aboveχ ∝ |t|−γ with the susceptibility exponent
γ = 1 in mean field theory. (The usual definition of the susceptibility isdM/d B = Nµ2ds/db.)

Exactly atTc there is anonlinearsusceptibility easily derived by expanding the tanh function in Eq. (7)

s ' (βcb + s) − 1

3
(βcb + s)3 + · · · . (13)

The terms linear ins cancel, so we must retain thes3 term. On the other hand the lowest order, linear term,
in b survives, so we can ignore terms inb2, bs etc. This gives

s(T = Tc, B) '
(

3b

kBTc

)1/3

+ · · · . (14)

The dependence of the order parameters on the symmetry breaking fieldb atTc and for smallb, i.e.s ∝ b1/δ

introduces the exponentδ = 3 in mean field theory.

With a little more effort we can calculate the internal energyU and other thermodynamic potentials. We will
do this in zero magnetic field only. In the mean field approximationU is simply given byNd “bonds” each
with energy−Js2

U = −Nd Js2 = −3Nd J

(
Tc − T

Tc

)
. (15)
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We can try to evaluate the free energy from the partition function calculated in analogy with Eq. (4) replacing
µB there withµBef f = 2Jds (rememberB is assumed to be zero). This turns out not to be quite right, so
we will call the expressionFI (I for independent)

FI = −NkBT ln
[
e−(Tc/T)s + e(Tc/T)s

]
(16)

replacing 2d J/kB by Tc. We want to expand this in smalls up tos4

FI = −NkBT ln

[
2

{
1 + 1

2

(
Tc

T

)2

s2 + 1

24

(
Tc

T

)4

s4 + · · ·
}]

(17a)

= −NkBT ln 2 − NkBT

[
1

2

(
Tc

T

)2

s2 − 1

12

(
Tc

T

)4

s4 + · · ·
]

. (17b)

The first term is just the free energy of the high temperature phase—in the mean field approximation simply
the entropy contribution of free spins. The second term ins2 suggests that the free energy is lowered by a
nonzeros for any temperature! Clearly something has gone wrong. The problem is, as often happens in
mean field treatments, is that we have double-counted the interaction energy: by adding the free energy of
spin 1 in the mean field of its neighbors (including spin 2 say) and the free energy of spin 2 in the mean field
of its neighbors, including spin 1, we have included the 1− 2 interaction twice. So we need to subtract off a
termU to correct for this

F = FI − U = −NkBT ln 2 − N Jd

[(
Tc − T

T

)
s2 − 1

6

(
Tc

T

)3

s4 · · ·
]

. (18)
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Figure 2: Specific heat of the Ising ferromagnet calculated in the mean field approximation.

Now we see that the free energy is lowered by a nonzeros only for T < Tc. Indeed minimizingF with
respect tos gives Eq. (10) as before, and then the reduction inF belowTc for nonzeros is

δF = −3

2
Nd J

(
Tc − T

Tc

)2

+ · · · . (19)

The power law dependence ofδF nearTc is used to define thespecific heat exponentδF ∝ |t|2−α with α = 0
in mean field theory.

The specific heat can be derived asdU/dt or −T d2F/dT2.using the former gives

C = −Nd J
ds2

dT
. (20)

This is zeroaboveTc, jumpsto 3NkB/2 at Tc, and then decreases to zero asT → 0, see Fig.2. This is
consistent withC ∝ |t|−α with α = 0.
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General Remarks

The Ising ferromagnet shows asecond ordertransition. Features are

1. A new state grows continuously out of the previous one: forT → Tc the two states become quantita-
tively the same.

2. As a consequence of (1) the thermodynamic potentialsF, U, S. . . are continuous atTc but not neces-
sarily smooth (analytic). In mean field theory the changes from the values just aboveTc showpower
law behavior in|1 − T/Tc|. Thederivativesof the potentials (specific heat, susceptibility etc.) simi-
larly show power laws (a jump such as inC can be considered a power law 0), and willdivergeat Tc

if the power is negative.

3. ForT < Tc equally good (i.e. energetically equal) but macroscopically different states exist. In the
Ising ferromagnet these states differ in the macroscopic magnetic momentM = ±Nµ |s|. This is a
broken symmetry—the thermodynamic states do not have the full symmetry of the Hamiltonian (here
all si → −si ). Instead the different thermodynamic states belowTc are related by this symmetry
operation. Since the states are macroscopically different, once one state is chosen, fluctuations to the
other state will not occur in the thermodynamic limit.

4. Because the states are quantitatively similar asT → Tc, fluctuations involving admixtures of other
states become important here, so that mean field theory willnot in general be a good approximation
nearTc. The power law behavior of thermodynamic quantities nearTc survives (and occurs both above
and belowTc in the more accurate description) but the powers or exponents are different than the values
calculated in mean field theory, and are no longer simple rationals.

5. Because of the power law singularities of the thermodynamic potentials nearTc, it is not possible
to classify phase transitions into higher orders (second, third etc.) according to which derivative of
the free energy is discontinuous (the Ehrenfest classification): we simply have first order transitions,
where the entropy, or volume etc. is discontinuous, and second order transitions where such variables
are continuous.

Analogies between liquid-gas and Ising ferromagnet transitions

There are in fact close similarities between the Ising transition and the liquid-gas transition. In particular
the critical point in the liquid-gas system is directly analogous to the transition temperature in the Ising
ferromagnet. The relationship is displayed in Fig.3. The analogies are in factquantitative—the transitions
at the critical points are said to be inthe same universality class. For example the density discontinuity
below the liquid-gas critical point grows as(Tc − T)β whereβ has the same value as in the growth of the
magnetization belowTc in the Ising ferromagnetM ∼ (Tc − T)β , and the compressibility in the gas diverges
nearTc in the same way that the susceptibility does at the magnet transition!

The main difference between the two transitions is that the magnetic field is an externally applied, symmetry
breaking field that can be set to zero. In the liquid-gas there is no symmetry between the two states belowTc

(the dense liquid and rarefied gas), and the value ofP yielding the transition (corresponding toB = 0 in the
magnetic case) is nota priori obvious.

When is mean field theory exact?

Mean field theory is often a useful first approach giving a qualitative prediction of the behavior at phase
transitions. It becomes exact when a large number of neighbors participate in the interaction with each spin,
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since then the fluctuations in the effective field indeed become small compared with the mean. This happens
in high enough spatial dimensiond, or for long range interactions. Ahandoutdescribes the infinite range Ising
model, and also introduces a useful formal approach known as the Hubbard-Stratonovich transformation,
demonstrating this. This is an advanced topic you can consult if you are interested.
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Figure 3: Analogy between Ising ferromagnet transition (left panels) and liquid-gas transition (right panels).
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