
Lecture 9 Supplementary Notes: Derivation of the Phase Equation

Michael Cross: June 6, 2006

Derivation from Amplitude Equation

Near threshold the phase reduces to the phase of the complex amplitude, and the phase equation can be
derived by “adiabatically eliminating” the relatively fast dynamics of the magnitude. The basic assumption
is that we are looking at the dynamics driven by gradual spatial variations of the phase, i.e. that derivatives of
θ are small. For simplicity we will also assume that we are looking at small deviations from a straight stripe
pattern, so that the phase perturbations themselves may also be considered small. This leads to thelinear
phase diffusion equation first derived by Pomeau and Manneville (1979). We will consider the full nonlinear
phase equation in the more general context away from threshold.

Consider the (scaled) amplitude equation
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Look at small perturbations about the stateĀ = aK ei K X with a2
K = 1 − K 2,

Ā = aei K Xei θ , a = aK + δa

Expand in

• small phase perturbationsθ and amplitude perturbationsδa

• small derivatives ofθ (up to second order)

Then using
e−i K Xe−i θ ∂T A = ∂Ta + ia∂Tθ,

the real part of the equation gives the dynamical equation fora, and the imaginary part of the equation gives
the dynamical equation forθ . The real part gives

∂Tδa = −2a2
K δa − 2KaK ∂Xθ + ∂2

Xδa

For time variations on aT-scale much longer than unity, the term on the left hand side is negligible, andδa
is said to adiabatically follow the phase perturbations. The term in∂2

Xδa will lead to phase derivatives that
are higher than second order, and so can be ignored. Hence

aK δa ' −K ∂Xθ.

The imaginary part gives
aK ∂Tθ ' 2K ∂Xδa + aK ∂2

Xθ + aK K ∂2
Yθ.

Eliminatingδa and usinga2
K = 1 − K 2 gives

∂Tθ =
[

1 − 3K 2

1 − K 2

]
∂2

Xθ + K ∂2
Yθ.

the phasediffusion equationin scaled units.
Returning to the unscaled units we get the phase diffusion equation
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∂tθ = D‖∂2
xθ + D⊥∂2

yθ

with diffusion constants for the state with wave numberq = qc + k (with k related toK by k = ξ−1
0 ε1/2K )

D‖ = (ξ2
0τ−1

0 )
ε − 3ξ2

0 k2

ε − ξ2
0 k2

D⊥ = (ξ2
0τ−1

0 )
k

qc
.

A negative diffusion constant leads to exponentially growing solutions, i.e. the state with wave number
qc + k is unstableto long wavelength phase perturbations for

|ξ0k| > ε1/2/
√

3 D‖ < 0: longitudinal (Eckhaus)
k < 0 D⊥ < 0: transverse (ZigZag)

General Method

Away from threshold the internal degrees of freedom as well as the overall magnitude again relax rapidly
compared to the phase variable for gradual spatial variations of the phase. The method of multiple scales can
again be used to derive the equation for the phase equation. This application of the method is a little different
from the derivation of the amplitude equation in that the slow scale is not determined by an independent
parameter such asε, but itselfdefinesthe small parameter. The small parameter is essentially the reciprocal
of the length scale of the spatial variation (in units of the periodicity of the pattern).

The starting point for the derivation of the phase equation is the definition of the phase variable in terms
of the wave vector field

∇θ(x⊥, t) = q(X, T), (1)

or

θ =
∫

q(X, T) · dx⊥. (2)

In these equations a slow space variableX has been introduced. It is defined as

X = ηx⊥, (3)

whereη is the small parameter such that the slow spatial variations of interest in the pattern occur over a
length scale of order unity in theX variable. Similarly a slow time scaleT is introduced

T = η2t, (4)

where the scaling withη2 anticipates the diffusive nature of the dynamics. The wave vector defines the
orientation and local periodicity of the pattern: this variable therefore varies on the long length scale, and is
a function of the slow variableX, but not of the fast variablex. In turn this slow spatial variation will induce
dynamics on the slow time scale. Note that Eq. (1) applies in regions of smooth variation of the pattern, away
from defects and disordered regions.

The expressions Eqs. (1), (2) are not easy to work with, because they mix the fast and slow coordinates
x⊥, X in an inconvenient way To develop the systematic perturbation expansion it is useful to introduce a
scaledphase variable2(X, T), through

2 = ηθ, (5)
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so that the derivatives of2 with respect toX areO(1) (the first derivative is just the wave vector). In terms
of the scaled phase we have

q(X) = ∇X2(X), 2(X) =
∫

q(X) · dX. (6)

This clever trick allows the inclusion in the same formal expansion scheme of both the first derivative ofθ ,
which is O(1) and gives the local wave vector, and higher derivatives ofθ , which areO(η), and give the
slow spatial variation.

With the definitions Eq. (6), the derivation of the phase dynamics follows quite closely the multiple scales
derivation of the amplitude equation. In the present case, we expand the evolution equations for the fields
u(x, t) in powers ofη, corresponding to the slow spatial variation ofq.

The zeroth order solution foru (i.e. no effect of the spatial variation ofq) is the fully nonlinear, spatially
periodic solutionuq(x⊥, z), which corresponds to the ideal stripe state with wave vectorq. Sinceuq is
periodic inx⊥ with period 2πq−1 in the q̂ direction, we redefine the spatially periodic function in terms of
the phase

uq(x⊥, z) = ūq(θ, z), θ = q · x⊥. (7)

The expansion in powers ofη is then

u(x⊥, z, t) = u(0)(θ, z; X, T) + ηu(1) + · · · , (8)

where the dependence ofu(i ) on the slow variablesX, T arises through the implicit dependence onq(X, T).
In particular we have for the zeroth order term

u(0)(θ, z; X, T) = ūq(X,T)(θ, z). (9)

Equation (8)is substituted into the evolution equations for the system, and terms at each order inη are
collected. To derive the lowest order phase equation, we need only go up to terms that are first order inη.
These terms arise from slow spatial derivatives, slow time dependence, and also the termηu(1) in Eq. (8).
For example, a spatial derivative acting onu(i ) gives

∇u(i ) → q∂θu(i ) + η∇Xu(i ). (10)

Higher order derivatives may also be needed, for example

∇2u(i ) → q2∂2
θ u(i ) + ηD∂θu(i ) + O(η2), (11)

with the operatorD defined by
D = 2q · ∇X + (∇X · q). (12)

Also, the time derivative gives

∂tu(i )(θ, z; X, T) = η2∂Tθ ∂θu(i ) + η2∂Tu(i ) = η∂T2 ∂θu(i ) + O(η2). (13)

At O(η) there are also termsηLu(1), with L the linear operator given by linearizing the equations of motion
aboutu(0). We know from physical arguments thatL has an eigenvector with zero eigenvalue, and so the
phase equation appears as the solvability condition that the equation foru(1) has a finite solution. Here we
see the close similarity with the derivation of the amplitude equation. The zero mode in the present case
corresponds to a translation of the solution, and so takes the from∇u(0).

This procedure is illustrated for the simple example of the Swift-Hohenberg equation in the following
section.
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Figure 1: Plot ofq B(q) in the phase equation for the Swift-Hohenberg model. A control parameter value of
r = 0.25 was used in constructing the plot. The solid line is whereB and(q B)′ (with the prime denoting
theq derivative) are positive, the dashed line is where(q B)′ is negative, the dotted line whereB is negative,
and the dashed-dotted line where bothB and(q B)′ are negative. The range ofq for the solid curve is the
wave number band for which stripes are linearly stable against long length scale perturbations.

Phase Equation for the Swift-Hohenberg Equation

The Swift-Hohenberg equation is the equation for a real scalar fieldu. Here we will use the equation in two
space dimensions, when it can be written in the form

∂tu(x, t) = ru − (∇2 + 1)2u − u3, (14)

with x = (x, y), and∇2 = ∂2
x + ∂2

y . As in Eq. (8), we expandu as an expansion in powers ofη, to give

u(x, t) = u(0)(θ, z; X, T) + ηu(1) + h.o.t., (15)

with X, T the slow space and time variables, as in Eqs. (3,4), andu(0) the zeroth order solution

u(0)(θ, z; X, T) = ūq(X,T)(θ), (16)

whereūq(θ = qx) is the nonlinear, spatially periodic, time independent solution for straight stripes which
satisfies

r ūq(θ) − (q2∂2
θ + 1)2ūq(θ) − ū3

q(θ) = 0. (17)

The h.o.t. in Eq. (15) denotes terms that are second order and higher inη.
We now substitute Eq. (15) into the evolution equation, Eq. (14). We will need the rather complicated

operator involving up to fourth order derivatives

(∇2 + 1)2 → [
(q2∂2

θ + 1) + ηD∂θ

] [
(q2∂2

θ − 1) + ηD∂θ

] + h.o.t. (18)

= (q2∂2
θ + 1)2 + η

{
2∂θ (q

2∂2
θ + 1)D + [2q · ∇X(q2)]∂3

θ

} + h.o.t.. (19)

The other terms in Eq. (14) are easy to evaluate up to first order inη

∂tu(x, t) → η(∂T2)∂θ ūq(θ) + h.o.t., (20)

ru − u3 → r ūq − ū3
q + η

[
r − 3ū2

q

]
u(1) + h.o.t.. (21)
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Now collecting terms atO(η) we find the equation

[
r − (q2∂2

θ + 1)2 − 3ū2
q

]
u(1) = (∂T2)∂θ ūq(θ) + {

2∂θ (q
2∂2

θ + 1)D + [2q · ∇X(q2)]∂3
θ

}
ūq(θ). (22)

It is straightforward to check that∂θ ūq is a zero-eigenvalue eigenvector of the operator on the left hand side

[
r − (q2∂2

θ − 1)2 − 3ū2
q

]
∂θ ūq = 0, (23)

as is expected from the translational symmetry. The operator acting onu(1) in Eq. (22) is self adjoint, and so
the solvability condition, that the right hand side have no component along this eigenvector, reduces to the
orthogonality condition for the right hand side with∂θ ūq:

(∂T2)

∫ 2π

0
dθ(∂θ ūq)

2 +
∫ 2π

0
dθ(∂θ ūq)

{
2∂θ (q

2∂2
θ + 1)D + [2q · ∇X(q2)]∂3

θ

}
ūq = 0. (24)

After integrating by parts with respect toθ some terms in the second integral, and rearranging, this reduces
to

(∂T2)

∫ 2π

0
dθ(∂θ ūq)

2 = ∇X ·
{

q
∫ 2π

0
dθ

[
q2(∂2

θ ūq)
2 − (∂θ ūq)

2
]}

. (25)

Eq. (25) is in the form introduced in the lecture (returning to unscaled variables)

τ(q)∂tθ = ∇ · [q B(q)] (26)

with

τ(q) = 1

π

∫ 2π

0
dθ(∂θ ūq)

2, (27a)

B(q) = 1

π

∫ 2π

0
dθ

[
q2(∂2

θ ūq)
2 − (∂θ ūq)

2
]
. (27b)

(Since we can multiplyτ andB by the same arbitrary constant without changing the equation, I have included
a normalization constant 1/π in these expressions for convenience.)

These integral expressions depend on knowing the full nonlinear, but spatially periodic stripe solutions to
some satisfactory level of approximation. A simple lowest order mode truncation givesūq ' aq cosθ, θ =
qx, with

a2
q = 4

3

[
r − (q2 − 1)2

]
. (28)

Then we find

τ(q) = a2
q, (29a)

B(q) = (q2 − 1)a2
q. (29b)

The functiona2
q is positive everywhere between the neutral stability curve of the uniform state, and goes to

zero on the neutral stability curve. The functionB(q) changes sign atq = 1. It is useful to plotq B(q),
since the slope of this curve is needed to calculate the parallel diffusion constant, and the signs ofB and
(q B)′ with the prime denoting the derivative with respect toq, are important in determining the stability of
the stripe state against long wavelength perturbations. The dependence ofq B on the wave numberq for the
Swift-Hohenberg model atr = 0.25 is shown in the figure.
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