
Chapter 11

Reconstructing the attractor

Many of the diagnostics for chaos we have looked at depend on knowing the phase
space dynamics. At first sight this seems to limit their application to numerical
systems. However it turns out to be possible toreconstructthe phase space attrac-
tor, in a way that preserves topological diagnostics such as Lyapunov exponents
and dimensions, from measurements of asingledynamical variable. This renders
experimental systems, at least with attractors of moderately low dimension, acces-
sible to the diagnostic tools. This idea was introduced by Packard et al. [1] and
the mathematical proof of the validity of this idea is due to Takens [2].

The scheme is the following. From the measurement of a single variablex (t)

form them-dimensional vectorEξ (t) given byx (t) at successive time delaysmτ ,
whereτ is a parameter to be chosen:

Eξ (t) = (x(t), x(t + τ), x(t + 2τ), . . . x(t + (m− 1)τ )) .

The vectorEξ (t)defines a trajectory in am-dimensional space. Then ifm ≥ 2DC+1
with DC the capacity dimension of the attractor, the trajectory gives a faithful
reconstruction of the flow in the physical phase space. Technically this means that
distancesδEξ in the reconstruction space and the corresponding distances in the
physical phase space have a ratio that is uniformly bounded and uniformly bounded
away from zero. Now we can do the same sort of tricks we do on numerical data on
real experimental data, e.g. Poincar´e sections, return maps, dimension estimates
etc.

In practiceDC is not knowna priori, and so usually increasing values ofm are
taken until dimension estimates saturate. The factor of 2 multiplyingDC in the
necessary “embedding dimension” is to eliminate spurious crossings. For example,
a circle corresponding to a limit cycle (DC = 1) may be reconstructed as a figure-8
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in a two dimensional embedding space, and this does not satisfy the requirements
of distance bounds in the faithfulness condition. In three dimensions however,
typically the line will not cross itself. Often a finite number of crossing points is
not considered a problem, andm ≥ DC + 1 is expected to be sufficient.

The size ofτ does not enter the mathematical proof—in principal any value may
be used. In practice often there is some range ofτ that gives the best reconstruction
in the presence of experimental limitations on the data. For too smallτ the recon-
struction is swamped by lack of resolution in the data or by noise; for too largeτ

there are often many crossings of the trajectory in the rangeDC+1≤ m ≤ 2DC+1
usually used. Often a value ofτ around the correlation time (the timeδt over which
the correlation function< x (t) x (t + δt) >t decays appreciably) is used, although
the choice is typically an art rather than a science.

In thedemonstrationsthe reconstruction method is applied to numerically gen-
erated data for the Lorenz and Rossler models.
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