
Chapter 2

The Language of Dynamical Systems

The well known example of the driven, damped pendulum provides a convenient
introduction to some of the language of dynamical systems.

2.1 The ideal pendulum

If we defineθ as the angular displacement of the pendulum from the equilibrium
(hanging down) position, the equation of motion for the oscillations of an ideal
pendulum is

d2θ

dt2
+ g
l

sinθ = 0, (2.1)

wherel is the length andg is the gravitational acceleration. We can write (2.1) as
two first order equations

θ̇ = ω (2.2)

ω̇ = −g
l

sinθ

introducing the angular velocityω, and then can use(θ, ω) as our phase space
coordinates. Later, we will introduce a different pair of coordinates, using the
angular momentumJ = Ml2ω as the second coordinate (withM the mass of the
pendulum). The dynamics in the phase space is given by a series of trajectories,
as shown in the figure: Since there is no dissipation in the equations, the energy is
conserved, and we can imagine labelling each trajectory by its energy.

Various features are marked on the figure
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Figure 2.1: Phase space of the ideal pendulum

The rest positionθ = ω = 0 is called a “fixed point”. This is an “elliptic” fixed
point, since nearby orbits take the form of ellipses (or circles in scaled coordinates).
Naively we might call this a stable fixed point, but since there is no dissipation
perturbations from the fixed point do not decay back to the fixed point.

Theθ coordinate runs from−π to π . There is a second fixed point at(π,0)
corresponding to the pendulum pointing vertically up: this is a “hyperbolic” fixed
point, because nearby trajectories take this form. These trajectories take an initial
point near the fixed point far away, and we would naively call this an unstable fixed
point.

The remaining orbits are periodic in time, and are called “limit cycles”. For
small energies, near(0,0) the limit cycles are the familiar simple harmonic motion,
represented by circles or ellipses (stretched circles) in the phase space. These would
give a single peak in a power spectrum, and would sound like a pure musical tone.
For larger energies, the orbit becomes distorted in the phase space and are no longer
simple harmonic. The power spectrum would show harmonics, with additional
frequencies at multiples of the fundamental, and the tone, although representing
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one musical note, would sound more complex.
A special pair of orbits leave the hyperbolic fixed point, and then eventually

return to it. (Remember theθ coordinate wraps around!) These are known as
“homoclinic” orbits. The dynamics slows down approaching the fixed point, and
the period of the limit cycle orbits diverge as their energy approaches the energy
of the homoclinic orbit. (In other systems we might have a “heteroclinic” orbit
connecting two different hyperbolic fixed points.)

We know that the ideal pendulum is a Hamiltonian system. This means we can
use the energy to construct a Hamiltonian :

H = 1

2I
J 2+Mgl(1− cosθ) (2.3)

which is just the energy written as a function of the two “canonically conjugate”
variables, the angular positionθ and the angular momentumJ = Iωwith I = Ml2
the moment of inertia. The Hamiltonian formulation of the dynamics is then

θ̇ = ∂H

∂J
= J

I
(2.4)

J̇ = −∂H
∂θ
= −Mgl sinθ .

It is easy to see that these are the same as (2.2).
A very important property of Hamiltonian systems is that the dynamics “pre-

serves volumes in phase space”. This means that if we start off many copies of
the system, with initial conditions filling some small volume in phase space, then
as the system evolves the volume of phase space containing the evolving points
distorts in shape, but keeps a fixed volume.

We first define a velocity in phase space giving the time dependence of the
phase space coordinates, here

EV = (θ̇ , J̇ ). (2.5)

Now it is easy to verify from the equations of motion that this “velocity” is diver-
gence free:

div EV ≡ ∂θ̇

∂θ
+ ∂J̇
∂J
= 0. (2.6)

This in fact is a general consequence of the form of the Hamilton equations of
motion. Just as for an incompressible fluid, this is equivalent to volume conserving
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flow, as can be seen by integrating over an arbitrary volume and using Gauss’s
theorem.

An immediate consequence of this result is that there are no attractors in Hamil-
tonian systems: there can be no attracting fixed point to which initial conditions
distributed over some volume converge, since this would yield a volume of points
in phase space contracting asymptotically to zero.

You can investigate the phase space of the ideal pendulum indemonstration 1.

2.2 The dissipative pendulum

If we add a dissipative force proportional to the velocity, the equation of motion
becomes

d2θ

dt2
+ ηdθ

dt
+ g
l

sinθ = 0 . (2.7)

It is easy to see that almost all phase space trajectories spiral into the fixed
point at(0,0). This is now truly a “linearly stable” fixed point, since if a small
perturbation is made from the fixed point, the perturbation decays in time (in fact
exponentially for small enough perturbations). On the other hand the fixed point
at (π,0) is “linearly unstable” because a small perturbation from this fixed point
grows exponentially. Only very carefully tuned initial conditions will lead to a
trajectory ending on the unstable fixed point, and almost all perturbations to the
initial condition will lead to a trajectory that may approach close to the unstable
fixed point, but eventually spirals into the stable fixed point. The(0,0) fixed
point is “attracting”, and in this case the “basin of attraction” i.e. the set of initial
conditions leading to trajectories that approach the fixed point, is the whole phase
space except for points on the “stable manifold” of the hyperbolic fixed point,
which is a set of zero area in the phase space.

The dynamical behavior can be studied indemonstration 2.

2.3 The periodically driven, damped pendulum

The situation is more interesting if we also drive the pendulum, feeding in energy
to resupply the energy dissipated. Simple harmonic driving leads to the following
equation

d2θ

dt2
+ γ dθ

dt
+ sinθ = g cos(ωDt) (2.8)
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where we have rescaled time so that the period of small oscillations of the un-
damped and undriven pendulum is unity, and we have written the scaled dissipation
coefficient asγ .

For small amplitudes of drivingg, and assuming a small initial condition, we
can replace sinθ by θ and solve the equation analytically:

θ = g√(
1− ω2

D

)2+ γ 2ω2
D

cos(ωDt + φ)+ Ae−γ t/2 cos(ωt + φA) (2.9)

with

tanφ = − γωD(
1− ω2

D

) , ω =
√

1− γ
2

4
. (2.10)

This is the well known resonant response (the first term) oscillating at the applied
frequency, together with decaying free oscillations (the second term) depending
on the initial conditions. We would call this solution an attracting limit cycle.

What happens for large driving amplitudes? Here there are no analytic solu-
tions, and we must proceed numerically. To gain some intuition we would like to
view the dynamics in a phase space. To this we convert the equation to autonomous
form by usingthreevariables

θ̇ = ω
ω̇ = −γω − sinθ + g cos(θD) (2.11)

θ̇D = ωD
where we have introduced the “phase of the driving”θD. This method of gaining
an autonomous form at the expense of an extra equation is a common and useful
trick. We again have a three dimensional phase space as in the Lorenz model: do
we find chaos?

First it is useful to look again at volumes in phase space. Now we have for the
divergence of the velocityEV = (θ̇ , ω̇, θ̇D)

div EV = ∂θ̇

∂θ
+ ∂ω̇
∂ω
+ ∂θ̇D
∂θD
= −γ , (2.12)

a constant! This means that volumes contract at a constant proportional rateγ . (The
Lorenz model shows this special feature too: there the proportional contraction
rate isσ + 1+ b). Systems whose phase space volumes are not conserved, and
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on some sort of average contract, are called dissipative systems. At first sight we
might expect a volume of initial conditions must contract to a point, i.e. all orbits
approach stable fixed points asymptotically—not very interesting. However this is
not the only possibility. We already know from the small amplitude case that the
orbits may approach an attracting limit cycle. Even more interesting, a phase space
volume may be stretched in one or more directions, whilst it is contracting in the
remaining ones so that overall the volume contracts. This is the crude description
of how chaos may occur in purely contracting dissipative systems. How chaos
occurs in perhaps this simplest and most familiar dynamical system is illustrated
in demonstrations 3-7.

December 24, 1999

Demo3.html

	The Language of Dynamical Systems
	The ideal pendulum
	The dissipative pendulum
	The periodically driven, damped pendulum


