
Chapter 22

Mathematical Chaos

The sets generated as the long time attractors of “physical” dynamical systems
described by ordinary differential equations or discrete evolution equations in the
case of maps such as the H´enon map appear to be very complicated, often with
unpleasant properties such as the lack of robustness (the parameters leading to
chaotic and nonchaotic solution may be intertwined on an arbitrarily small scale).
Few proofs are available for the conjectured properties of these sets. To make
mathematical progress it is necessary to make restrictions on the type of dynamical
systems considered, that go far beyond standard smoothness assumptions. Often
the assumptions needed to construct proofs are so strict that it isknownthat all
common “physical” attractors violate the assumptions. (However, numerical tests
of the results proven for the restricted systems often show that they apply, at least
as an excellent approximation, to the physical systems.) In this chapter the goal
is to present some of the flavor of this mathematical approach, since many of our
ideas on chaotic systems have arisen in this context.

A key assumption in much of the mathematical development is the notion of
“hyperbolicity”. To define this concept it we first introduce the general idea of
stable and unstable manifolds. Useful references are: Eckmann and Ruelle [1],
sectionsIIIE , F; Ott [2], sections 4.3 and 9.5; Aligood et al. [3], section 2.6 and
chapter 10; and Guckenheimer and Holmes [4] section 5.2.

22.1 Stable and Unstable Manifolds

22.1.1 Saddle Fixed Point
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The idea of stable and unstable manifolds is most easily introduced in the context
of a saddle fixed point of a two dimensional map. They are the natural extensions of
the linear eigenvectors of the stability analysis of the fixed point into the nonlinear
regime.

Consider a fixed pointxf of a differentiable two dimensional mapF with
a differentiable inverse map. Ifxf has one unstable eigenvalues with |s| > 1
and corresponding eigenvectorEs , and one stable eigenvalueu with |u| < 1 and
corresponding eigenvectorEu, it is called a saddle fixed point. The stable manifold
of xf denotedWs(xf ) is the set of pointsy such that

∣∣Fn(y)− Fn(xf )∣∣→ 0 as
n→∞; the unstable manifold ofxf denotedWu(xf ) is the set of pointsy such
that

∣∣F−n(y)− F−n(xf )∣∣→ 0 asn→∞. Both are one dimensional manifolds
containingxf . A manifold is basically a nice set (e.g. without fractal properties):
a one dimensional manifold is defined as a set that is locally a curve and can be
produced locally by bending a line. The letters D (in a sans serif font!) and O
are 1-manifolds, the letters A and X are not, since there are points where no small
neighborhood looks like a line (Aligood et al. [3]). AlsoWs(xf ) is tangent toEs

andWp(xf ) is tangent toEu atxf .
The extension to periodic saddles is given by noting that these are fixed points of

Fq for someq, and there is a straightforward generalization to higher dimensional
maps. The idea of stable and unstable manifolds can be defined locally at an
arbitrary pointx in the phase space: the stable manifoldWs of x is the set of points
y such that|Fn(y)− Fn(x)| → 0 asn → ∞, and the unstable manifoldWu of
x is the set of pointsy such that

∣∣F−n(y)− F−n(x)∣∣ → 0 asn → ∞. Useful
results can be proven for stable and unstable manifolds. For example ifx is in
an attracting set6 thenWu(x) is contained in6. Also the number of positive
Lyapunov exponents of the set is a lower bound for the capacity dimension of6.

22.2 Hyperbolic Invariant Sets

A hyperbolic invariant set in a sense is the generalization of a saddle fixed point
and can be defined in terms of the properties of the linearized map about the point
x on the set, i.e. the tangent spaceTx at the pointx. Note that the definition applies
to both attracting and nonattracting sets.

An invariant set6 under the mapF is said to be hyperbolic if there is a direct
sum decomposition ofTx into stable and unstable spacesTx = Esx ⊕ Eux for all x
in 6 such that:

(i) the splitting intoEsx , E
u
x varies continuously withx;



CHAPTER 22. MATHEMATICAL CHAOS 3

(ii) the splitting is invariant in the sense thatDF(x)Es,ux = Es,uF(x), i.e. the evolving
the stable and unstable spaces atx with the tangent space map gives the same
result as the stable and unstable spaces at the evolved pointF(x);

(iii) there are numbersK > 0 and 0< ρ < 1 such that for alln > 0

|DFn(x)v| ≤ Kρn|v| for v in Esx (22.1)

|DF−n(x)v| ≤ Kρn|v| for v in Eux . (22.2)

(In these expressionsDF(x) is the Jacobean matrix ofF at x.) The latter
condition says that the exponential decay rate of vectors in the stable subspace and
the exponential growth rate in the unstable subspace are bounded away from zero.

Again the linear spacesEsx , E
u
x may be extended into the nonlinear regime far

from x to give stable and unstable manifoldsWs(x), Wu(x) at each pointx on
the attractor that are tangent toEsx , E

u
x at x (e.g. Guckenheimer and Holmes [4],

Theorem 5.2.8). Two points on the stable (unstable) manifold approach (separate
from) each other exponentially.

Most of the mathematical understanding of chaotic attractors is restricted to
hyperbolic attractors. Further restrictions are often needed on smoothness and other
properties. For example anAxiom Aattractor is an attractor of a differentiable map
that is hyperbolic and mixing. The property of mixing is that for any two setsSa
andSb in the phase space

lim
n→∞µ

[
Sa ∩ Fn(Sb)

] = µ(Sa)µ(Sb) (22.3)

whereµ is the natural measure of the attractor. The property of mixing is that
initial conditions get spread over the attractor according to the measure. Axiom
A attractors are particularly nice, and many results have been proven for these
attractors, for example the existence of a natural invariant measure that is smooth
along the expanding directions. Axiom A attractors are also structurally stable,
which means that even the delicate chaotic structure survives a small perturbation
of the map.

Most physical attractors are non-hyperbolic because there are points on the
attractor where the stable and unstable manifolds are tangent to one another (see
figure22.1for the Hénon map). Structural stability does not seem to be a property
of many physical attractors. The bakers’ map is hyperbolic, although the map is
not differentiable so it is not Axiom A. In the next chapter the horseshoe map, that
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Figure 22.1: Plot of the H´enon attractor (red) and the stable manifold (blue) of the
fixed point that lies within the attractor. The stable componentEsx of the tangent
space (i.e. the contracting direction) lies along this curve at the pointsx where it
intersects the attractor. Since the expanding directionEux lies along the attractor,
we see thatEsx andEux are parallel at points where the blue curve is tangent to
the attractor. At these points they do not span the tangent spaceTx indicating a
breakdown of hyperbolicity. The calculation of the stable manifold is discussed in
reference [5], and the figure was constructed using the program supplied there.
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is both differentiable and hyperbolic, is introduced. This map shows a chaotic set,
but this set is not an attractor. The Ansov map or “cat map”

xn+1 = xn + yn mod 1 (22.4)

yn+1 = xn + 2yn mod 1

is a differentiable, area preserving hyperbolic map (the eigenvalues of the Jacobean
(3± √5)/2 and the eigenvectors are independent of position). The orbit from a
typical initial condition fills the whole unit square with uniform measure. The map
is therefore Axiom A. The Sinai map

xn+1 = xn + yn + δ cos(2πyn) mod 1 (22.5)

yn+1 = xn + 2yn mod 1

can be considered a perturbation of this map, and so by structural stability for small
enoughδ will also be hyperbolic and the attractor will be of capacity dimension
2. The measure of the Sinai map is however no longer uniform and in fact shows
interesting structure, and diagnostics involving the measure (e.g. the information
dimension) will vary withδ. The properties of the Sinai map are illustrated in the
demonstration.

22.3 Illustration

To illustrate the flavor of the use of hyperbolicity to prove properties of chaotic
attractors consider the following [6].

For a mapF with an Axiom A (i.e.hyperbolicandmixing) attractor the natural
measure of the attractor contained in some closed setS is

µ(S) = lim
n→∞

∑
i

L−1
i (22.6)

where the sum is over the unstable fixed points ofFn which lie inS, andLi is the
product of the unstable eigenvalues of the linearization ofFn at theith fixed point.
In particular if the setS is the entire attractor so thatµ(S) = 1 we have

1= lim
n→∞

∑
i

L−1
i . (22.7)
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Figure 22.2: Pointx0 is mapped intoxn underFn. Then if ab → a′b′ and
cd → c′d ′ the parallelogramefgh→ e′f ′g′h′, and by continuity there must be a
single saddle fixed point ofFn in the intersection region. In all cases the horizontal
(vertical) lines in the figure are segments of the stable (unstable) manifolds. The
figure is drawn with orthogonal lines for simplicity, but this is not essential to the
argument.

22.3.1 Proof

We will illustrate the proof for two dimensional maps. Partition the phase space
into small cellsCi where each cell has as its boundaries the stable and unstable
manifolds. Small enough cells may be considered parallelograms. Consider the
iteration of a large number of initial conditions distributed over a particular cell
Ck according to the natural measure of the attractor. Iterate a large number of
timesn then a fraction given byµ(Ck)will return to the cell (the mixing property).
Supposex0 is an initial condition that returns toxn in Ck. If ab is the stable
manifold segment passing throughx0 anda′b′ its image aftern iterations, andc′d ′
is the unstable manifold segment passing throughxn andcd its preimage under
n iterations, then the parallelogramefgh is mapped to the parallelograme′f ′g′h′
aftern iterates, where the boundaries ofefgh ande′f ′g′h′ are segments of stable
and unstable manifolds (see figure22.2). This means there must be a single saddle
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fixed point ofFn in the intersection region, and conversely any saddle fixed point
of Fn can be surrounded by similar parallelograms. If the unstable eigenvector of
the fixed point isλu > 1, then the height ofefgh is a fractionλ−1

u of the height of
Ck. The measure of an Axiom A attractor is smooth along the unstable directions,
and sinceCk is small so that the distribution of the measure across the height can
be considered uniform, the fraction of the measure ofCk in the stripefgh is then
justλ−1

u . Thus the fraction of initial conditions that return toCk underFn, which
by the mixing property isµ(Ck) for largen, is given by summing theλ−1

u over
the saddle fixed points ofFn within Ck. Summing over theCk in S then proves
the result22.6 since for a two dimensional mapL is just equal to the unstable
eigenvalueλ.

Further results may be derived relating the properties of chaotic attractors to the
unstable periodic orbits. A few of these results, proven for hyperbolic attractors,
are quoted here for a two dimensional map.

1. The Lyapunov exponents are

λ1,2 = lim
n→∞

1

n

∑
i

1

λ
(i)
u

ln λ(i)u,s (22.8)

with λ(i)u , λ(i)s the unstable and stable eigenvalues at theith periodn point.

2. The capacity dimensionDC is given by

lim
n→∞

∑
i

(
λ(i)s

)DC−1 = 1. (22.9)

3. The eigenvalues of the Perron-Frobenius operatorδ(y − f (x)) for the evo-
lution of the measure can be expanded in the unstable fixed points [7].

Auerbach et al. [8] have tested some of these results on the (nonhyperbolic)
Hénon map, which has 1, 3, 1, 7, 1, 15, 29, 63, 55, 103 order 1 to 10 cycles
respectively. For example the calculate values forDC based on (22.9) and get
values of 1.26, 1.29, 1.30, 1.26, 1.27 using cycles of order 6 to 10. There is a large
literature in both math and physics on this area.
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