
Chapter 24

Controlling Chaos

Chaotic attractors contain unstable periodic orbits of any desired period (this is
shown inchapter 22for Axiom A attractors). Furthermore, for an ergodic attrac-
tor we know that any trajectory will eventually come arbitrarily close to any of
these orbits. This offers the opportunity forcontrolling chaos: when the chaotic
orbit approaches the unstable periodic orbit of interest it can be attracted to and
maintained on the orbit by applying small perturbations to the system. There are
two aspects to the problem. The first, depending on the properties of the whole
attractor, is the idea that waiting long enough guarantees that the orbit will come
arbitrarily close to any chosen point on the attractor. Alternatively knowledge of
the chaotic attractor can be used to speed this process by directing the orbit to the
desired region—this idea is studied further in thenext chapter. The second part
is to use delicate perturbations of the system to keep the orbit on or very close to
the unstable orbit. This part can be analyzed in terms of small perturbations from
the orbit, i.e. by alinear analysis. There is an enormous literature in “Control
Theory” in engineering that can be taken over for this second part. An intriguing
aspect of control in the context of chaotic systems is thatdifferentperiods can be
selected simply by changing the nature of the delicate perturbations of the system.

The idea of “controlling chaos” was suggested in a famous paper by Ott, Gre-
bogi and Yorke [1], and we will first study the idea in the context they used of
chaos in a two dimensional map (which might be the Poincar´e section of a three
dimensional flow). Two reviews are [2] and [3].

24.1 The OGY Method
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Figure 24.1: The OGY approach to control. (a) The unstable fixed point, stable
and unstable eigenvectors,es andeu, and their adjoints,fs andfu. The dotted
line is the path of the fixed point as the control parameter is varied. (b) Shifting
the fixed point to the new (solid) position allowsxn+1 to be directed to the stable
manifold of the unshifted (dashed) fixed point.

Suppose we wish to control the chaotic dynamics of a two dimensional mapF

onto an unstable fixed pointExf . (Controlling to an unstable period-n orbit can
be achieved by considering the corresponding fixed point of the mapF̄ = Fn,
although this might not be the most efficient way in practice). We suppose the fixed
point has one stable directionEes with eigenvalueλs and one unstable directionEeu
with eigenvalueλu, as would be typical for an attractor of dimension less than 2.
The goal is to achieve control through small changes to a parameterp of the map.
The OGY scheme for control is easily understood pictorially. Figure (24.1) depicts
the unstable fixed pointExf with its stable and unstable eigenvectors, and also the
path of the fixed point for small changes inp given by

Eg = ∂ Exf
∂p

. (24.1)

If an iteration pointExn comes close toExf i.e. Exn = Exf + δExn with δExn small, the
parameterp is changedp = p0 + δpn so that after the next iterationExn+1 lies
along the stable direction ofExf . We can calculateExn+1 by linearizing about the
moved position of the fixed point

(δExn+1− δpn Eg) =
(
λuEeu Efu + λsEes Efs

)
· (δExn − δpn Eg) (24.2)
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where Efu and Efs are the unit adjoint eigenvectors

Efu · Ees = Efs · Eeu = 0 (24.3)

so that the resolving a vectorEv alongEeu andEes gives componentsEv · Efu andEv · Efs
respectively. The condition forExn+1 to lie along the stable direction ofExf is then
δExn+1 · Efu = 0 which gives

δpn = λu

λu − 1

δExn · Efu
Eg · Efu

. (24.4)
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Figure 24.2: Two trajectories near the unstable fixed point. The valuesxj are used
to determine the position of the fixed point and the JacobeanA.

This is trivial to implement if we have analytic knowledge of the map function
F . Usually we are interested inempirical controlwhere the parameters have to be
extracted from observations of the dynamics. This is done in three stages:

1. Identify the unstable periodic orbit(s) or ordern: we need to find anEx such
thatFn(Ex) is sufficiently close toEx. Thus we form a vectorExi, Exi+1 . . . Exi+n
and test whetherExi+n is equal toExi within some chosen tolerance, but not
equal to any intermediateExi+j (within the tolerance) since this would indicate
a lower period orbit. If the test fails incrementi and try again.
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2. Characterize the unstable fixed point ofF̄ = Fn: every timeExn comes close
to Exf (within some tolerance) successive returns are fit to the linear form

Exj+1− Exf = A
(Exj − Exf ) (24.5)

until Exj moves too far away fromExf , with A the 2× 2 matrix

A =
[
a11 a12

a21 a22

]
(24.6)

whereExf and the coefficientsaij are determined by a least squares fit (figure
24.2). The matrixA is then diagonalized to give the eigenvaluesλu, λs ,
the eigenvectorsEeu, Ees , and the adjoint eigenvectorsEfu, Efs . The vectorEg is
found by slightly incrementing the parameterp and extracting the newExf
by a similar least squares fit.

3. Control is now implemented with these estimated parameters using (24.4).
Since the control is estimated using linearization, it is only implemented
whenExn comes sufficiently close toExf .

A slight wrinkle to this method is added if the observed chaotic dynamics is
reconstructed from the measurements of a single dynamical variable [4]. For the
case of a two dimensional map the relationship between the reconstructed map and
the phase space map depends on the map parameter at the previous iteration

Exn+1 = F (Exn;pn, pn−1) (24.7)

so that now(
δExn+1− δpn Eg − δpn−1 Eh

)
=
(
λuEeu Efu + λsEes Efs

)
·
(
δExn − δpn Eg − δpn−1 Eh

)
(24.8)

with Eg = ∂ Exf /∂pn andEh = ∂ Exf /∂pn−1. This leads to

δpn = λu

λu − 1

δExn · Efu
Eg · Efu

− Eh · EfuEg · Efu
δpn−1. (24.9)

The new vectorEh can be “learned” by applying small changesδpn top that are on
for n even and off forn odd.

The OGY control scheme is illustrated in thedemonstration.

Demos.html
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24.2 General Linear Control Theory

The OGY control method is very appealing intuitively. However it is only one of
a large class of possible algorithms. In addition, it is very easy to guess incorrect
generalizations from this (perfectly correct) special case. For example it might be
guessed that a new control parameter is needed for each new unstable direction at
the fixed point in higher dimensional situations. This isnot the case: typically only
asinglecontrol parameter is sufficient even when multiple directions are unstable.
Since the issue islinear control near the fixed point or periodic orbit, the fact that
we are dealing with achaoticsystem is of secondary importance in the control
algorithm, and standard results from linear control theory [5],[6] can be taken over
directly.

We will consider the framework of more general control methods for unstable
fixed points in systems of arbitrary dimensionN using a vector ofM control
parametersp. Linearizing near the fixed point we have

xn+1 = Axn + Bun (24.10)

where we are measuring the dynamical variablex from the fixed point, andun =
pn − p i.e. the perturbations of the map parameters. The matricesA andB are
given by derivatives at the fixed point

Aij = ∂Fi

∂x(j)
and Bik = ∂Fi

∂p(k)
. (24.11)

Notice that the matrixB is fixed by the choice of control parameters. (The dimen-
sion of the parameter vector need not of course be equal to the dimension of the
phase space vectorx, soB, anN ×M matrix, need not be square.) In general we
could takeun to depend on a number of prior values ofx (i.e. xn, xn−1 . . . xn−m).
However we will restrict ourselves to “proportional control”

un = −Kxn, (24.12)

with K andM ×N matrix. Thus we have, within the linear approximation

xn+1 = (A− BK) xn (24.13)

and the properties of this linear system tells us about the possibility of control.
A system is said to bestabilizableif with the choice of control parametersp a

“feedback gain matrix”K can be found such that all the eigenvalues ofA − BK
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lie within the unit circle i.e. |λi | < 1. Clearly then, with the control on, the
perturbationx from the fixed point dies away exponentially.

A more strict notion is that of controllability. A system is said to be linearly
controllableif for any initial conditionx0 close to the fixed point atx = 0, there
exists a sequence of perturbationsu0 . . . ut−1 for any t ≥ N such thatxt = 0.
Within the proportional scheme this is equivalent to the requirement that each
eigenvalue of the matrixA − BK can be chosen at will, and in particular can be
made zero.

Using linear algebra, the condition for controllability can be easily constructed.
The explicit expression forxt for t = N is

xN = ANx0+
N−1∑
j=0

AN−1−jBuj . (24.14)

Denote theith column in the matrixB asbi :

B = [b1 : b2 : b3 : . . . : bM ] . (24.15)

Regarding the terms

f
j

i = AN−j bi, j = 1, N; i = 1,M (24.16)

asN ×M basis vectors andu(k)j−1 (k = 1,M andj = 1, N) as coordinates, we see
that the conditionxN = 0 can only be satisfied for generalx0 if this set of vectors
is complete, i.e. there areN linearly independent vectors. This is equivalent to
requiring

rank(C) = N (24.17)

whereC is the “controllability matrix”

C = [B : AB : A2B : · · · : AN−1B] (24.18)

i.e. C is the matrix with columns [b1 : b2 : b3 . . . bM : (Ab1) : (Ab2) :
(Ab3) . . . (AbM) . . . ]. For the case of proportional control this is in fact the same
condition that a matrixK can be found such that the matrixA−BK has any desired
eigenvalues. For the single control parameter caseB is a column vectorb1, and for
a matrixA with nondegenerate eigenvalues the controllability condition is simply
thatb1 has components along all the eigenvectors ofA. If this is satisfied, the sys-
tem is controllable by thesingleparameter, no matter how many of the eigenvectors
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correspond to unstable directions. In this one parameter case, if the controllability
condition is satisfied, the matrixK can be obtained from Ackermann’s formula

K = [0,0,0, . . .1]C−1φ(A) (24.19)

with

φ(A) = (A− µ1I ) (A− µ2I ) . . . (A− µnI) (24.20)

whereµi are the desired eigenvalues. The more complicated multiparameter case
is discussed by [6].

The stabilizability condition can be written in similar form: if there arens
stable directions with eigenvectorses andnu unstable directions, the system is
stabilizable if

rank(S) = N (24.21)

with S the “stabilizability matrix”

S = [e1 : . . . ens : B : AB : A2B : · · · : Anu−1B]. (24.22)

The OGY method for a single unstable direction corresponds to setting the
eigenvalue ofA−BK along the unstable direction ofA to zero to give immediate
convergence to the stable manifold. The “direct targeting” method aims at arriving
at the fixed point afterN steps, which corresponds to setting all the eigenvalues of
A−BK to zero. Note, of course, that in this caseA−BK is a degenerate matrix,
and will not haveN independent eigenvectors (when we would get convergence
to the fixed point in a single step!).

24.3 Linear Quadratic Control

There is clearly considerable flexibility in choosing a control scheme—it is too
easy to control systems! Often the method (e.g. OGY) is chosen for conceptual
simplicity or by ingenuity. It would be useful to have some sort of quantitative
measure of the “goodness” of any control scheme. Various measures of the quality
could be imagined: the smallest number of steps; the validity over the widest
deviation from the fixed point (the linear approach will break down somewhere);
or the robustness of the control in the presence of noise. An attractive scheme is
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to minimize a cost function, for example the quadratic form in the deviationsxn
and the control strengthsun

V (x0) =
∞∑
n=1

xTn Qxn + uTn Run (24.23)

whereQ,R are positive symmetric matrices that are chosen to weight the different
directions, and the relative importance of restricting the deviationsxn and control
strengthsun to small values (e.g. for the two linearizations (24.10) to be a useful
approximation). Equation (24.23) can be minimized, subject to the constraint of
the dynamics (24.10), using standard Lagrange multiplier or other methods. After
considerable effort it can be shown [7] that the minimum is reached forK given
by

K = (R + BT PB)−1
BT PA (24.24)

whereP is the symmetric matrix that is the solution to the “discrete time algebraic
Ricatti equation”

P = Q+ AT PA− AT PB (R + BT PB)−1
BT PA. (24.25)

(This equation can be solved iteratively

Pn+1 = Q+ AT PnA− AT PnB
(
R + BT PnB

)−1
BT PnA (24.26)

which usually converges rapidlyPn→ P from a typical choice of symmetricP0.)
To get some insight into the minimization consider the situation whereA−BK

has nondegenerate eigenvaluesλi . We can then write

V (x0) =
∑
i

x
(i)∗
0

(
Q+KTRK

)
ij
x
(j)
0

1− λ∗i λj
(24.27)

with the indicesi, j referring to components along the eigenvectors ofA − BK.
If we supposex0 is chosen at random, and average over all possible directions we
want to minimize the average

〈V 〉 =
∑
i

(
Q+KTRK

)
ii

1− |λi |2
. (24.28)
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This does not solve the general problem, since the unknown matrixK appears, as
well as the unknown eigenvalues and eigenvectors ofA−BK. For the special case
R = 0 andQ = I (minimize the mean square distance ofxn from the fixed point)
the sum reduces to

〈V 〉 =
∑
i

(
1− |λi |2

)−1
(24.29)

which suggests the minimization is given by setting allλi = 0, i.e. the direct
targeting algorithm (although then the eigenvalues are degenerate so the procedure
may not be consistent).

An interesting result is for controlling dynamics in the presence of small additive
uncorrelated noise, i.e. given by

xn+1 = F(xn)+ ξn (24.30)

with ξn a random variable. It can be shown that minimizing〈V 〉 (24.23) in the
presence of noise leads to thesameoptimization condition (24.24),(24.25).

24.4 Applications

There has been an enormous number of papers written on applications of the control
of chaos. Not all papers with this phrase in the title describe schemes that fall into
the framework I have discussed, namely

• control by application of small feeback signals, that go to zero or to very small
values controlled by stochastic noise (not deterministic, chaotic “noise”)
once control has been achieved;

• control to a pre-existing unstable fixed point or periodic orbit within the
attractor;

• control making intelligent use of the the structure of the dynamics near the
unstable orbits.

Some schemes, using large applied signals, are more reminiscent of locking of
large amplitude oscillators. Of course, schemes not implemeting all these features
may still be useful! For example one early application was to controlling chaos in
heart muscle [8]. Here, if the spontaneous heart beat is delayed from the expected
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period, afiniteelectrical stimulus is provided to force a heart beat, so the analysis
in terms of a small change in the control parameter is not valid. Nevertheless, the
timing of the stimulated pulseis determined from an OGY type analysis of the
pulse time return map—simply stimulating at the expected period didnot lead to
a periodic response.
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