
Chapter 7

Lyapunov Exponents

Lyapunov exponents tell us the rate of divergence of nearby trajectories—a key
component of chaotic dynamics. For one dimensional maps the exponent is simply
the average< log |df/dx| > over the dynamics (chapter 4). In this chapter the
concept is generalized to higher dimensional maps and flows. There are now a
number of exponents equal to the dimension of the phase spaceλ1, λ2 . . . where
we choose to order them in decreasing value. The exponents can be intuitively
understood geometrically: line lengths separating trajectories grow aseλ1t (where
t is the continuous time in flows and the iteration index for maps); areas grow as
e(λ1+λ2)t ; volumes ase(λ1+λ2+λ3)t etc. However, areas and volumes will become
strongly distorted over long times, since the dimension corresponding toλ1 grows
more rapidly than that corresponding toλ2 etc., and so this is not immediately a
practical way to calculate the exponents.

7.1 Maps

Consider the map

Un+1 = F(Un). (7.1)

with U the phase space vector. We want to know what happens to a small change
in U0. This is given by the iteration of the “tangent space” given by the Jacobean
matrix

Kij (Un) = ∂Fi

∂U(j)

∣∣∣∣
U=Un

. (7.2)
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Then if the change inUn is εn

εn+1 = K (Un)εn, (7.3)

or

∂U
(i)
n

∂U
(j)
0

= Mn
ij =

[
K (Un−1)K (Un−2) . . .K (U0)

]
ij
. (7.4)

7.2 Flows

For continuous time systems

dU

dt
= f (U) (7.5)

a changeε(t) in U(t) evolves as

dε

dt
= K (U)ε with K(ij) = ∂fi

∂U(j)

∣∣∣∣
U=U(t)

. (7.6)

Then

∂U(i)(t)

∂U(j)(t0)
= Mij (t, t0) (7.7)

with M satisfying

dM
dt
= K (U(t))M . (7.8)

7.3 Oseledec’s Multiplicative Ergodic Theorem

Roughly, the eigenvalues ofM for larget areeλin or eλi(t−t0) for maps and flows
respectively. The existence of the appropriate limits is known as Oseledec’s mul-
tiplicative ergodic theorem [1]. The result is stated here in the language of flows,
but the version for maps should then be obvious.
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For almost any initial pointU(t0) there exists an orthonormal set
of vectorsvi (t0) , 1≤ i ≤ n with n the dimension of the phase space
such that

λi = lim
t→∞

1

t − t0 log‖M (t, t0)vi(t0)‖ (7.9)

exists. For ergodic systems the{λi} do not depend on the initial point,
and so are global properties of the dynamical system. Theλi may be
calculated as the log of the eigenvalues of[

MT (t, t0)M (t, t0)
] 1

2(t−t0) . (7.10)

withT the transpose. Thev(t0)are the eigenvectors ofMT (t, t0)M (t, t0)

and are independent oft for larget .

Some insight into this theorem can be obtained by considering the “singular
valued decomposition” (SVD) ofM = M(t, t0) (figure7.1a). Any real matrix can
be decomposed

M =WDVT (7.11)

whereD is a diagonal matrix with diagonal valuesdi the square root of the eigen-
values ofMTM andV,W are orthogonal matrices, with the columnsvi of V the
orthonormal eigenvectors ofMTM and the columnswi of W the orthonormal
eigenvectors ofMMT . Pictorially, this shows us that a unit circle of initial condi-
tions is mapped byM into an ellipse: the principal axes of the ellipse are thewi
and the lengths of the semi axes aredi . Furthermore the preimage of thewi are
vi i.e. thevi are the particular choice of orthonormal axes for the unit circle that
are mapped into the ellipse axes. The multiplicative ergodic theorem says that the
vectorsvi areindependentof t for larget , and thedi yield the Lyapunov exponents
in this limit. The vectorvi defines a direction such that an initial displacement in
this direction is asymptotically amplified at a rate given byλi . For a fixedfinal
pointU(t) one would similarly expect thewi to be independent oft0 for mostt0
and larget − t0. Either thevi or thewi may be called Lyapunov eigenvectors.

7.4 Practical Calculation

The difficulty of the calculation is that for any initial displacement vectorv (which
may be an attempt to approximate one of thevi) any component alongv1 will
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Figure 7.1: Calculating Lyapunov exponents. (a) Oseledec’s theorem (SVD pic-
ture): orthonormal vectorsv1, v2 can be found at initial timet0 thatM(t, t0)maps
to orthonormal vectorsw1, w2 along axes of ellipse. For larget − t0 thevi are
independent oft and the lengths of the ellipse axes grow according to Lyapunov
eigenvalues. (b) Gramm-Schmidt procedure: arbitrary orthonormal vectorsO1,
O2 map toP1, P2 that are then orthogonalized by the Gramm-Schmidt procedure
preserving the growing area of the parallelepiped.

be enormously amplified relative to the other components, so that the iterated
displacement becomes almost parallel to the iteration ofv0, with all the information
of the other Lyapunov exponents contained in the tiny correction to this. Various
numerical techniques have been implemented [2] to maintain control of the small
correction, of which the most intuitive, although not necessarily the most accurate,
is the method using Gramm-Schmidt orthogonalization after a number of steps [3]
(figure7.1b).

Orthogonal unit displacement vectorsO(1), O(2), . . . are iterated according
to the Jacobean to give, after some number of iterationsn1 (for a map) or some
time1t1 (for a flow),P (1) = MO(1) andP (2) = MO(2) etc. We will useO(1) to
calculateλ1 andO(2) to calculateλ2 etc. The vectorsP (i)will all tend to align along
a single direction. We keep track of the orthogonal components using Gramm-
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Schmidt orthogonalization. WriteP (1) = N(1)P̂ (1) with N(1) the magnitude and
P̂ (1) the unit vector giving the direction. DefineP ′(2) as the component ofP (2)

normal toP (1)

P ′(2) = P (2) −
(
P (2) · P̂ (1)

)
P̂ (1). (7.12)

and then writeP ′(2) = N(2)P̂ ′(2). Notice that the areaP (1)×P (2) = P (1)×P ′(2)
is preserved by this transformation, and so we can useP ′(2) (in fact its norm
N(2)) to calculateλ2. For dimensions larger than 2 the further vectorsP (i) are
successively orthogonalized to all previous vectors. This process is then repeated
and the eigenvalues are given by (quoting the case of maps)

enλ1 = N(1)(n1)N
(1)(n2) . . .

enλ2 = N(2)(n1)N
(2)(n2) . . .

(7.13)

etc. with n = n1+ n2+ . . . .
Comparing with the singular valued decomposition we can describe the Gramm-

Schmidt method as following the growth of the area of parallelepipeds, whereas
the SVD description follows the growth of ellipses.

Example 1: the Lorenz Model

The Lorenz equations (chapter 1) are

Ẋ = −σ(X − Y )
Ẏ = rX − Y −XZ
Ż = XY − bZ

. (7.14)

A perturbationεn = (δX, δY, δZ) evolves according to “tangent space” equations
given by linearizing (7.14)

δẊ = −σ(δX − δY )
δẎ = rδX − δY − (δX Z +X δZ)
δŻ = δX Y +X δY − bδZ

(7.15)

or

dε

dt
=
 −σ σ 0
r − Z −1 −X
Y X −b

 ε (7.16)
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defining the Jacobean matrixK .
To calculate the Lyapunov exponents start with three orthogonal unit vectors

t (1) = (1,0,0) , t (2) = (0,1,0) andt (3) = (0,0,1) and evolve the components of
each vector according to the tangent equations (7.16). (Since the Jacobean depends
onX, Y,Z this means we evolve(X, Y, Z)and thet (i) as a twelve dimensional cou-
pled system.) After a number of iteration steps (chosen for numerical convenience)
calculate the magnification of the vectort (1) and renormalize to unit magnitude.
Then projectt (2) normal tot (1), calculate the magnification of the resulting vector,
and renormalize to unit magnitude. Finally projectt (3) normal to the preceding
two orthogonal vectors and renormalize to unit magnitude. The product of each
magnification factor over a large number iterations of this procedure evolving the
equations a timet leads toeλit .

Note that in the case of the Lorenz model (and some other simple exam-
ples) the trace ofK is independent of the position on the attractor [in this case
− (1+ σ + b)], so that we immediately have the result for the sum of the eigen-
valuesλ1+λ2+λ3, a useful check of the algorithm. (The corresponding result for
a map would be for aconstant determinantof the Jacobean:

∑
λi = ln det|K|.)

Example 2: the Bakers’ Map

For the Bakers’ map, the Lyapunov exponents can be calculated analytically. For
the map in the form

xn+1 =
{
λaxn if yn < α

(1− λb)+ λbxn if yn > α

yn+1 =
{
yn/α if yn < α

(yn − α)/β if yn > α

(7.17)

with β = 1− α the exponents are

λ1 = −α logα − β logβ > 0
λ2 = α ln λa + β logλb < 0

. (7.18)

This easily follows since the stretching in they direction isα−1 or β−1 depending
on whethery is greater or less thanα, and the measure is uniform in they direction
so the probability of an iteration falling in these regions is justα andβ respectively.
Similarly the contraction in thex direction isλa or λb for these two cases.
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Numerical examples

Numerical examples on 2D maps are given in thedemonstrations.

7.5 Other Methods

7.5.1 Householder transformation

The Gramm-Schmidt orthogonalization is actually a method of implementing “QR
decomposition”. Any matrixM can be written

M = QR (7.19)

with Q an orthogonal matrix

Q = [ Ew1 Ew2 · · · Ewn
]

andR an upper triangular matrix

R =


ν1 ∗ ∗ ∗
0 ν2 ∗ ∗
...

. . .
. . .

...

0 0 · · · νn

 , (7.20)

where∗ denotes a nonzero (in general) element. In particular for the tangent
iteration matrixM we can write

M = MN−1MN−2 . . .M0 (7.21)

for the successive steps1ti or ni for flows or maps. Then writing

M0 = Q1R0, M1Q1 = Q2R1, etc. (7.22)

we get

M = QNRN−1RN−2 . . .R0 (7.23)

Demos.html
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so thatQ = QN andR = RN−1RN−2 . . .R0. Furthermore the exponents are

λi = lim
t→∞

1

t − t0 lnRii. (7.24)

The correspondence with the Gramm-Schmidt orthogonalization is that theQi are
the set of unit vectorsP ′1, P ′2, . . . etc. and theνi are the normsNi . However an
alternative procedure, known as the Householder transformation, may give better
numerical convergence [1],[4].

7.5.2 Evolution of the singular valued decomposition

The trick of this method is to find a way to evolve the matricesW,D in the
singular valued decomposition (7.11) directly. This appears to be only possible for
continuous time systems, and has been implemented by Kim and Greene [5].

7.6 Significance of Lyapunov Exponents

A positive Lyapunov exponent may be taken as the defining signature of chaos.
For attractors of maps or flows, the Lyapunov exponents also sharply discriminate
between the different dynamics: a fixed point will have all negative exponents;
a limit cycle will have one zero exponent, with all the rest negative; and am-
frequency quasiperiodic orbit (motion on am-torus) will havem zero eigenvalues,
with all the rest negative. (Note, of course, that a fixed point on a map that is a
Poincaré section of a flow corresponds to a periodic orbit of the flow.) For a flow
there is in fact always one zero exponent, except for fixed point attractors. This is
shown by noting that the phase space velocity satisfies the tangent equations:

dU̇ (i)

dt
= ∂Fi

∂U(j)
U̇ (j) (7.25)

so that for this direction

λ = lim
t→∞

1

t
log

∣∣U̇ (t)∣∣ (7.26)

which tends to zero except for the approach to a fixed point.
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7.7 Lyapunov Eigenvectors

This section is included because I became curious about the vectors defined in the
Oseledec theorem, and found little discussion of them in the literature. It can well
be skipped on a first reading (and probably subsequent ones, as well!).

The vectorsvi—the direction of the initial vectors giving exponential growth—
seem not immediately accessible from the numerical methods for the exponents
(except the SVD method for continuous time systems [5]). However thewi are
naturally produced by the Gramm-Schmidt orthogonalization. The relationship of
these orthogonal vectors to the natural stretching and contraction directions seems
quite subtle however.

F N

e s
e s

e u

e uM N

M N
e s+ e s+

e u+

e u+
U 0

U N

Figure 7.2: Stretching directionEeu and contracting directionEes at pointsU0 and
UN = FN(U0). The vectorEeu atU0 is mapped to a vector alongEeu atUN by the
tangent mapMN etc. The adjoint vectorsEeu+, Ees+ are defined perpendicular toEes
andEeu respectively. An orthogonal pair of directions close toEes , Eeu+ is mapped
by MN to an orthogonal pair close toEeu, Ees+.

The relationship can be illustrated in the case of a map with one stretching
directionEeu and one contracting directionEes in the tangent space. These are unit
vectors at each point on the attractor conveniently defined so that separations along
Ees asymptotically contract exponentially at the rateeλ− per iteration forforward
iteration, and separations alongEeu asymptotically contract exponentially at the rate
e−λ+ for backwarditeration. Hereλ+, λ− are the positive and negative Lyapunov
exponents. The vectorsEes andEeu are tangent to the stable and unstable manifolds
to be discussed inchapter 22, and have an easily interpreted physical significance.
How are the orthogonal “Lyapunov eigenvectors” related to these directions? Since
Ees andEeu are not orthogonal, it is useful to define the adjoint unit vectorsEeu+ and
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Ees+ as in Fig.(7.2) so that

Ees · Eeu+ = Eeu · Ees+ = 0. (7.27)

Then under some fixed large number of iterationsN it is easy to convince oneself
that orthogonal vectorsEe(0)1 , Ee(0)2 asymptotically close to the orthogonal pairEes , Eeu+
at the pointU0 on the attractor are mapped by the tangent mapMN to directions
Ee(N)1 , Ee(N)2 asymptotically close to the orthogonal pairEeu, Ees+ at the iterated point
UN = FN(U0), with expansion factors given asymptotically by the Lyapunov
exponents (see Fig.(7.2)). For exampleEes is mapped toeNλ−Ees . However a small
deviation fromEes will be amplified by the amounteNλ+. This means that we can
find anEe(0)1 given by a carefully chosen deviation of ordere−N(λ+−λ−) from Ees that
will be mapped toEes+. Similarly almost all initial directions will be mapped very
close toEeu because of the strong expansion in this direction. Deviations in the
direction will be of ordere−N(λ+−λ−). In particular anEe(0)2 chosen orthogonal to

Ee(0)1 , i.e. very close toEeu+, will be mapped very close toEeu. Thus vectors very
close toEes , Eeu+ at the pointU0 satisfy the requirements for thevi of Oseledec’s
theorem andEeu, Ees+ at the iterated pointFN(U0) are thewi of the SVD and the
vectors of the Gramm-Schmidt procedure. It should be noted that for 2N iterations
rather thanN (for example) the vectorsEe(0)1 , Ee(0)2 , mapping toEeu, Ees+ at the iterated
pointU2N , must be chosen as a very slightlydifferentperturbation fromEes , Eeu+—
equivalently the vectorsEe(N)1 , Ee(N)2 atUN will not be mapped under a furtherN
iterations toEeu, Ees+ at the iterated pointU2N .

It is apparent that even for this very simple two dimensional case neither the
vi nor thewi separately give us the directions of bothEeu andEes . The significance
of the orthogonal Lyapunov eigenvectors in higher dimensional systems remains
unclear.

January 26, 2000
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